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We study theoretically the surface of time-reversal-symmetric, noncentrosymmetric superconductor with
mixed singlet and triplet order parameters. A pair of counterpropagating subgap quasiparticle surface bound
states with opposite spin projections are obtained in the nontrivial Z2 case where the triplet component is larger
than the singlet one, contributing to a spin current with out-of-plane spin projection. In contrast to the pure
p-wave cases, these subgap states do not have fixed spin projections, which, however, depend on the momenta
along the surface. In the trivial Z2 case where the singlet order parameter is larger, no subgap surface bound
states show up. In both cases, there is also a finite contribution to the spin current from the continuum states
with energies between the two gaps. The method for obtaining the quasiclassical Green’s functions associated
with the noncentrosymmetric superconductors is also presented.
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I. INTRODUCTION

How to manipulate spin in condensed-matter system has
been the main challenge for both experimentalists and theo-
rists in this community. Recently, the predictions1–3 and
observations4–7 of topological insulators �TIs� with time-
reversal symmetry �TRS�, such as HgTe/�Hg,Ce�Te semicon-
ductor wells,4 Bi1−xSbx,

5 Bi2Se3,6 and Bi2Te3,7 inspire a great
deal of interest in both the application and the fundamental
research ends. The main feature of a TI is a pair of counter-
propagating edge states with opposite spin projections devel-
oped out of a gapped band structure, very much like the edge
states in the integer Quantum Hall case except that the TRS
is broken in the latter case. In the language of homotopy, the
mapping from the momentum space to the Hamiltonian can
be smoothly deformed into either one of the two distinct
elements in the so-called Z2 class associated with the trivial
and nontrivial TIs. This pair of surface bound states contrib-
utes to a spin current near the surface of a TI.8

The concept of TI can also be generalized to supercon-
ductors �SCs�. A simple example is the �two-dimensional
�2D�� p-wave superconductor with its order parameter given
by d� =kxŷ−kyx̂. We can see explicitly from the order param-
eter ���kx− iky��↑↑�+ �kx+ iky��↓↓�� that the Cooper pairs with
down �up� spins have a counterclockwise �clockwise� mo-
tion. This state is clearly time-reversal symmetric. Each spe-
cies is in an axial state, considered in, e.g., Refs. 9 and 10,
with the phase of the Cooper pair wave function advances
�decreases� by 2� when the angle of the momentum direc-
tion advances by the same angle. Considering the surface of
this superconductor adjacent to vacuum, the incident and re-
flected quasiparticles see an order parameter with a different
phase factor, analogous to the case of a Josephson junction.
A pair of surface bound states with opposite spin projections
propagate in opposite directions, generating no charge but
finite spin current, as in the case of a topological insulator.
Moreover, straightforward generalization of the results of
Refs. 9 and 10 implies that a singly quantized vortex of this
superconductor possesses a pair of zero-energy Majorana
states inside its vortex core. In contrast, the order parameter

of an s-wave singlet superconductor do not change sign over
the Fermi surface. No surface bound states are topologically
required and the superconductor thus belongs to trivial class.

For noncentrosymmetric SCs �NcSCs�, such as the com-
pounds CePt3Si,11 Li2Pt3B,12 and CeRhSi3,13 and the 2D
electron gas between two insulating layers,14 complication
arises due to the presence of parity-broken spin-orbital inter-
action and the singlet-triplet mixed superconducting order
parameters.15 For example, for a system with no up-down
reflection symmetry, the s-wave singlet order parameter �s
and the triplet order parameters �p with the d vector given
by �kxŷ−kyx̂� would naturally mix since they are of the same
symmetry.16 Alternatively, the two Fermi surfaces with op-
posite helicities can be associated with two different super-
conducting gaps as a result of the broken-inversion
symmetry.17 Nevertheless, the topological classifications still
can be deduced from the existence of zero-energy vortex
bound states18 or the surface bound states.19 These studies
reveal that only the relative signs of the pairing terms on the
opposite-helicity bands matter for the topology, which can
also be shown by more explicit topological arguments.20,21

NcSC with opposite signs of pairing on the two bands re-
sembles the pure p-wave triplet superconductor in that a pair
of topologically protected zero energy or surface bound
states reside within the vortex core or at the surface, respec-
tively, while these topological bound states do not exist at all
in the NcSC with same sign of pairing, which resembles the
pure s-wave singlet SC.

In this paper we shall consider in more detail the surface
of a NcSC, as shown in Fig. 1, as a function of the singlet �s
and triplet �p order parameters. For simplicity, here we
would not consider the dispersion along the z axis �or effec-
tively 2D� nor the splitting of the Fermi surfaces due to spin-
orbit interactions. The absence of spin-orbital coupling may,
in fact, correspond to a narrowly accessible physical regime
in mixed-parity superconductivity.22 Our simplification,
however, does not affect the main physics that we would like
to explain in this paper. Comments on this aspect will be
given later.

For the present geometry, there is no xy-plane reflection
symmetry whereas the time-reversal symmetry and the
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xz-plane reflection symmetry are left intact. Following the
same symmetry arguments as in our previous paper,23 the
magnetization along any directions automatically vanish due
to the time-reversal invariance. However, the spin currents
Jy

z, Jy
x, and Jx

y can, in principle, be allowed. We shall examine
whether these spin currents are finite.

In the pure p-wave case ���s�=0�, the bound states have
their spins quantized parallel or antiparallel to the z axes.
Only Jy

z is nonzero.23,24 We would examine what happen to
these states when �s is finite, especially their spin directions.
We shall see that the spins are no longer polarized along z in
the general case. In the context of topological supercon-
ductor, the parity-mixed order parameters with ��p�� ��s� be-
long to the nontrivial Z2 class,18–20 and the pair of surface
bound states with opposite spin projections propagating in
opposite directions still exist. These surface bound states can,
in principle, be detected by tunneling conductance, which
has now been investigated in great detail theoretically.19,25,26

We shall, however, concentrate on the spin currents in this
paper. These surface states can still generate the spin currents
Jy

z �and, in principle, also Jy
x, but see below�. However, as we

shall see, this is not the only contribution. For the case of
��s�� ��p�, the superconductor belongs to the trivial category
and it is expected that the surface bound states do not sur-
vive. An immediate question is, at the transition point for
��p�= ��s�, whether the spin current drops to zero abruptly,
signaling the transition of topology, or it is smoothly decreas-
ing toward zero, coinciding with the pure s-wave case only
when �p vanishes. In the following, we shall consider the
above questions by evaluating quantities such as the
momentum- and spin-resolved densities of states and the
spin current of the NcSC with varying ratio ��p� / ��s�. We
find that nonzero spin current Jy

z is dictated only by the bro-
ken symmetry and can be finite for both the topological
trivial and nontrivial superconductors. The contribution to
this spin current turns out to arise also from nontopological
continuum states with energies between the two gaps
��p��s�. These states are present in both the topological
trivial and nontrivial superconductors, and they are not re-

quired by topology. �We recall here the analogous situation
that a finite spin Hall conductivity is possible from the Kubo
formula27 yet the model can belong to the topologically
trivial Z2 class3�. Lastly, though, in principle, Jy

x and Jx
y are

allowed by symmetry, we found that they vanish within our
calculations.

II. QUASICLASSICAL GREEN’S FUNCTION
ASSOCIATED WITH NcSC

Now we use the quasiclassical Green’s functions to inves-
tigate the surface of a clean NcSC. Here we shall employ the
so-called exploding and decaying tricks,28–30 which is related
to the projector formalism initiated by Shelankov.31 This
method is different from the approach which employs the
Riccati transformation.32 The Matsubara Green’s function

ĝ�k̂ ,�n ,R� in spin and particle-hole space satisfies the Eilen-
berger equation33

�i�n	3 − �̂, ĝ� + iv� f · �� Rĝ = 0 �1�

with the normalization condition

ĝ2 = − �21̂. �2�

Here �n and k̂ denote the Matsubara frequency and momen-
tum direction associated with the quasiparticles, respectively.
R represents the spatial position. The set of matrix �1,	�� is
used in the particle-hole sector while �1,
� � serve for the
usual spins. In this representation, the 4�4 pairing order
parameter can be written as

�̂ = 	 0 ��

− �� † 0

 , �3�

where the 2�2 matrix �� = ��s+�pd��k�� ·
� ��i
y� in the usual

spin representation. Here •̂ and •� are to denote the 4�4 and
2�2 matrices, respectively. The triplet order parameter we
consider is of Rashba form d� = �−ky ,kx�. �s and �p can be
both taken real since we assumed TRS. Without loss of gen-
erality, they will both be assumed positive. There are two
energy gaps, ��p��s�, associated with the quasiparticles in
the superconducting states.34 One should also note that we
have not included the spin-orbital coupling term which may
arise from the lack of inversion symmetry in the normal
state. Therefore, only one Fermi surface and its associated
Fermi velocity vF are needed. Qualitative effects of including
the spin-orbital coupling will be discussed later in the paper.
For simplicity, we shall also ignore the spatial variations in
the order parameters �s,p.

We consider the geometry shown in Fig. 1. The incoming
and reflecting quasiparticles have the momentum k� and k,
respectively. Here kx�0 and k�x�0. We label positions along

the quasiparticle path consisting of each pairs of k̂ and k̂� by u

with u�0 �u�0� labels the part for k̂�k̂��. The quasiclassical
Green’s function at the surface ĝ�0� can be obtained in terms
of the decaying and exploding solutions to Eq. �1� �cf. Ref.
30�

φ
∆=(∆

s
+∆

p
d⋅σ)(iσ

y
)

d(k)=(−k
y
,k

x
)

k

k

x

y

FIG. 1. The interface between vacuum �gray� and a noncen-
trosymmetric superconductor �white� with singlet-triplet mixed or-
der parameter specified by text. The directions are defined by the
shown axis. The quasicparticle is incident from the lower right of xy
plane along the path denoted by k.  is the reflection angle between

the x axis and the outgoing path k̂.
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ĝ�0� = − i��Â�k�,B̂�k����Â�k�,B̂�k���−1, �4�

where the matrix Â= â+++ â−− and B̂= b̂+++ b̂−−. Below the

four matrix solutions â�� and b̂�� are explicitly shown

â�� = 	1 � d̂ · 
̂	3

2

�− i����2	3 − i��� + �n�

���s + �pd̂ · 
� �
y	+ + i��� − �n�
y��s
� + �p

�d̂ · 
� �	−� ,

�5�

b̂�� = 	1 � d̂ · 
̂	3

2

�i����2	3 − i��� − �n�

���s + �pd̂ · 
� �
y	+ + i��� + �n�
y��s
� + �p

�d̂ · 
� �	−� ,

�6�

where the notation we used for the three 4�4 matrix 
̂
��
x ,
y	3 ,
z� should be noticed. The parameters ��

=��n
2+ ����2, where ��=�s��p. More details can be found

in Appendix.

III. SURFACE BOUND STATES AND SPIN CURRENTS

Equipped with Eqs. �4�–�6�, we are ready to investigate
the surface bound states and spin currents at the surface. We
do so by evaluating the spin- and momentum-resolved den-
sities of states along different spin projection directions. For
example, for a given momentum, the density of states
at the surface for spins along positive �negative� z axis is

given by �z����=−
NF

� Im Tr�
1�
z

2 g�
R�k̂ ,� ;x=0��, where g�

R

=g� �i�n→�+i�,�n�0 is the retarded Green’s function. Similar for-
mulas apply by replacing z with the other corresponding di-
rections. Here g� is the 2�2 matrix in spin space given by the
upper left block of ĝ in the Nambu space.

We shall show the results for representative cases of non-
trivial Z2 with ��p /�s�=2 and trivial Z2 with ��p /�s�=1 /2.
Figure 2 shows the spin-resolved density of states �z,� with
= �

�
6 and ��p /�s�=2. The momentum ky =kF sin  is a

good quantum number as a result of the translational invari-
ance along ŷ. The peaks below the gap indicate the surface
bound-state energy corresponding to

det��Â�k�,B̂�k�����i�n→�+i� = 0. �7�

In the case of pure p wave ��s=0�, the bound-state spectrum
is given by ESz=��ky�= � ��p�sin .23,24 In this limit these
surface quasiparticles have a fixed spin orientation. Hence
�z���� consists of a single delta function peak at �
= � ��p�sin . In contrast, in Figs. 2�a� and 2�b�, we find two
subgap peaks, though with large differences in height. These
indicate that the quasiparticles in the NcSC are no longer
eigenstates of Sz in the presence of order parameter mixing.
These minor peaks in �z���� vanish eventually as ��p� / ��s� is
increased toward infinity. Moreover, �x,y���� �Figs. 3 and 4�
are also finite at the bound-state energies. We shall see that
the quantization axes for the spins are not aligned with ẑ.
Furthermore, the spin-resolved densities of states are finite
also for energies larger than ��−�. This contribution is a con-
tinuous �not delta� function in energy, indicating that this
contribution to the spin densities and spin currents arises
from continuum states not bound near the surface. We note
that kinks also appear in these density of states at the gap
edges where �= � ����= � ��p��s�. In this case, they are
���s� and �3��s�, respectively.

For a given angle  which parametrizes the quasiparticle
path, the surface bound states appear in pairs of equal but
opposite energies. The bound-state energy for the E�0
branch versus the angle  is plotted in Fig. 5. It can be seen
that the Andreev bound states are pushed toward the band
edge by the s-wave pairing order parameter. We study in
addition �Fig. 5, right panel� the spin polarization Si

�
�i,+−�i,−

�i,++�i,−
of the Andreev bound state versus the angle . The

sum in the denominator is, in fact, independent of the direc-
tion i and equals the density of states. The Si’s in some sense
describe the spin direction of the Andreev bounds state.35

With increasing �p /�s, Sz approaches a step function while
Sx approaches zero. Thus we can conclude that the effect of
s-wave order parameter is to tilt the spin of Andreev bound
states toward the x axis.
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FIG. 2. �Color online� Momentum- and spin-resolved surface densities of states �z,� in unit of
NF

� with ��p�=2��s�. �a� = �

6 . �b�
=− �

6 . Note that the upper �lower� plot in �a� is identical to the lower �upper� one in �b� due to the time-reversal symmetry. The numerical
values associated with the subgap peaks are related to the small imaginary number �=10−6 we used in the transformation i�n→�+ i�, which
is also true in Fig. 3.
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The spin current density Jy
z at the surface is obtained via

the expression

Jy
z�x = 0� =

�

2
NFvF d

2�
�sin �T�

n

Tr�
zg� �k̂,�n;0�� .

�8�

The summation over the Matusbara frequency �T�nTr�. . .g� ��
can be replaced by the integral

 d�

2�
Im Tr�. . .g�R����tanh	 �

2T



with respect to the real frequency �. We shall first note an
elementary symmetry relation followed from TRS of our su-
perconducting state

�n̂,��ky,�� = �n̂,��− ky,�� , �9�

which is valid for all spin projections n̂. This can be seen in
Figs. 2 and 3, etc. From Fig. 2, we see that we also have, in
addition, the symmetry �z��ky ,��=�z��−ky ,−�� �and conse-
quently �z+�ky ,��=�z−�ky ,−���. The asymmetry between
�z+�ky ,�� and �z−�ky ,�� �and between �z+�ky ,�� and �z+�
−ky ,��� causes a finite spin current Jy

z in the topological non-
trivial cases as well as in the trivial cases whereas Eq. �9�
guarantees that all spin accumulations are zero. For spin pro-
jections along x̂ and ŷ as in Figs. 3 and 4, we have in addi-
tion �x,y+�ky ,��=�x,y+�ky ,−��, �and similarly for +→−�
which forbids both the spin currents Jy

x and Jx
y.

In the trivial Z2 case where we choose ��p�= ��s� /2, no
subgap state is found as in Fig. 6�a�. However, there is still
an asymmetry between �z+�ky ,�� and �z−�ky ,�� for the con-
tinuum states between the two gaps so that these states con-
tinue to contribute to Jy

z. The quasiparticles upon reflection at
the surface is now analogous to transmission through a Jo-
sephson junction between two unequal-gap SCs with a rela-
tive phase difference,36 where intergap continuum states con-
tribute to a finite current. We suggest here that the
contribution to the spin current can be pictured in similar
manner. With Eq. �8�, we find that Jy

z is indeed nonvanishing.
This is justified in the real frequency domain as shown in
Fig. 6�b� where a finite contribution to Jy

z is found at energies
� between the gaps −��+����−��−����−���� ��+��. Note
that there is no contribution from states with ���� ��+�.
�These two statements also hold for the topologically non-
trivial case.�

In Fig. 7, the values of Jy
z�x=0� as a function of the triplet

to singlet order parameter ratio ��p� / ��s� is presented. Jy
z�x

=0� increases from zero in pure s-wave case toward the
value obtained in the pure triplet case. In the topologically
trivial regime, ��p�� ��s�, Jy

z�x=0� seems to be quadric in
��p� while in the topologically nontrivial regime, it is roughly
linearly with ��p�. The asymptotic value for Jy

z�x=0� coin-
cides with our previous results.23 Figure 8 shows the values
of the total spin current Iy

z ��0
�dxJy

z�x�.

IV. DISCUSSIONS AND CONCLUSIONS

The pairing Hamiltonian can be conveniently written in
the helicity basis,17 H�= 1

2�k�i�+e−ikak+
† a−k+

†

− i�−eikak−
† a−k−

† �+H.c. Here �� are both real numbers so
that the above is time-reversal invariant. k is the angle be-
tween the momentum k and the x axis. The relation �s,p
= ��+��−� /2 can be obtained upon transforming back to the
normal spin basis �ak↑

† ,ak↓
† �. Thus the pure p-wave Rashba

triplet SC and the pure s-wave singlet SC are recovered
when �+= ��−, respectively; while the case with ��+�
� ��−� belongs to the NcSC. The nontrivial Z2 class corre-
sponds to �+�−�0.20,21

The pure s- and p-wave cases, ��+�= ��−�, are well under-
stood from the previous papers.23,24 The main difference be-
tween the pure triplet case and the present NcSC is that the
surface Andreev bound states do not have a fixed spin pro-
jection. Moreover, besides the surface bound states, the con-
tinuum states between the two gaps, ����, also contribute to
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FIG. 4. �Color online� Same as Fig. 3 except here that �y,� is
shown. The results for = �

�

6 are identical.
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FIG. 3. �Color online�
Momentum- and spin-resolved
surface densities of states �x,� in

unit of
NF

� with ��p�=2��s�. �a� 
= �

6 . �b� =− �

6 . Besides the same
symmetry followed by TRS, it
shows in additional symmetry
with �↔−� which forbids the
spin current Jy

x.
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the spin current and are solely responsible for its nonvanish-
ing value in the topologically trivial case.

In our calculations, where the normal-state spin splitting
is not included, only the component Jy

z is nonvanishing while
the other components do not appear, even though the quasi-
particles have their spins not aligned with the ẑ axis. Mixed-
parity SC order parameter along with the presence of Rashba
spin-orbital interaction accounting for the absence of inver-
sion symmetry may be closer to the physically accessible
regime.22 However, the inclusion can, in principle, generate
nonzero spin currents even in the normal-state under
equilibrium.37 Even so, the spin current obtained in the nor-
mal state for a spin-split band is much smaller than what we
have obtained in our mixed-parity superconducting state
without the corresponding spin-orbital coupling, provided
that the factor TcEF

2 /�3 is sufficiently large,24,37 which is pre-
sumably true in usual situation when the spin splitting energy
��EF. Moreover, inclusion of the spin-orbital coupling in
the normal state will make the spin current ill defined be-
cause of the lack of spin conservation. In Ref. 24, the authors
define the real spin current in superconductors by subtracting
the contribution obtained in the normal state. They then ob-
tained also finite Jy

x and Jx
y.

In conclusion, we use the exploding-decay tricks to obtain
the quasiclassical Green’s functions associated with a
singlet-triplet mixed noncentrosymmetric superconductor.

For the topologically nontrivial NcSC, we obtain a pair of
Andreev bound states without a fixed spin projection and a
consequent spin current Jy

z. For the topologically trivial
NcSC, a finite spin current Jy

z remains even though no An-
dreev bound state can be found.
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APPENDIX: EXPLODING AND DECAYING
TRICK IN NcSC

Here we shall present our scheme for obtaining the solu-
tions given in Eq. �4� to the Eilenberger equations �Eqs. �1�
and �2�� for the NcSC in the presence of a boundary as
shown in Fig. 1. Equation �4� is expressed in terms of the
exploding and decaying solutions Eqs. �5� and �6� of an aux-
iliary problem that is identical to the present NcSC for x
�0. To make our reasoning clearer, we first consider the

special case where d̂ coincides with ẑ, then eventually obtain

the Green’s function for general d̂. �A similar method to ob-
tain the quasiclassical Green’s function for a uniform non-
centrosymmetric superconductor has been also used in Ref.
38. Our treatment extends to the nonuniform case and we
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also point out some useful mathematical relations not noted

in there�. The matrix M̂ = �i�n− �̂� appearing in the commu-
tator in Eq. �1� becomes, after an obvious rearrangement of
rows and columns, block diagonalized. Explicitly, with u

= k̂ ·R, it has the form

�	M� ++ 0

0 M� −− 
,	g�
++ g�

+−

g�
+− g�

−− 
� + ivF�u	g�
++ g�

+−

g�
+− g�

−− 
 = 0,

�A1�

where the diagonal elements of M̂ are

M� �� � 	 i�n ���

���
� − i�n


 . �A2�

The parameters ��=�s��p. By imposing the spatial depen-
dence of e−2�u/vF to ĝ, Eq. �A1� becomes a problem for find-
ing eigenvalues � and the corresponding eigenvectors. For
example, the upper diagonal block �++� simplifies to
�M� ++ ,g�

++�−2i�g�
++=0. This relation is analogous to the pure

s- or p-wave cases and can be solved in the same manner.
The eigenvalues � form the set �0,0 ,�+ ,−�+� with �+

���n
2+ ��+�2 and the associated eigenvectors are, respec-

tively, the set of 2�2 matrices �−i�1 ,g�b
++ ,a��+

++ ,b�−�+

++ �. The
previous two are the “constant solutions” while a��+

++ and b�−�+

++

are the decaying and exploding ones, given by

a��+

++ = 	 − i��+�2 − �+��+ + �n�
− �+

���+ − �n� i��+�2 
 , �A3�

b��+

++ = 	 i��+�2 − �+��+ − �n�
− �+

���+ + �n� − i��+�2 
 , �A4�

respectively. Besides, the following equality holds as well as
in, e.g., Ref. 23

g�b
++ = − i��a�++,b�++��a�++,b�++�−1, �A5�

=
− �

�+
M� ++, �A6�

where the subscripts for eigenvalues are omitted if no con-
fusion is generated. Similar results can be obtained in the
�−−� block by defining �−=��n

2+ ��−�2. As for the off-
diagonal blocks �+−� and �−+�, they share the same set of
eigenvalues, ���s , ��d�, with the subscripts standing for
the sum and difference by �s,d=

�+��−

2 . The eigenvectors be-
longing to the block �ij�= �+−� or �−+� will be labeled as
�a��s,d

ij ,b��s,d

ij �. It should be reminded that the decaying �explod-
ing� solutions are associated with positive �negative� eigen-
values.

Since the product of two solutions to Eq. �A1� also solves
that equation, this product must be proportional to another
solution, or it must vanish, depending on whether the sum of
the corresponding eigenvalues coincides or not with any of
the allowed eigenvalues. More precisely, if g��

ij is a solution in
the �ij� block with eigenvalue �, then the product g��1

ij g��2

jk is
identical to g��1+�2

ik �up to a proportionality constant� or zero
depending on whether �1+�2 coincides with one of the ei-
genvalues associated with the block �ik�. Using Eq. �A5�, the
following relations can be easily shown:

a���g�b
�� = i�a���, �A7�

b���g�b
�� = − i�b���, �A8�

a��d,s

+− g�b
−− = � i�a��d,s

+− , �A9�

a��d,s

−+ g�b
++ = i�a��d,s

−+ , �A10�

b��d,s

+− g�b
−− = � i�b��d,s

+− , �A11�

b��d,s

−+ g�b
++ = − i�b��d,s

−+ . �A12�

Next we return to general d� direction. Observing that g�b
��

in Eq. �A5� can, in fact, be written as �− �
��

1�
z	3

2 M̂�d̂= ẑ�� in
the 4�4 Nambu notation, we see that the information about

d� is embedded in the projection operator P�=
1�d̂·
̂	3

2 , where
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FIG. 7. Surface spin current density Jy
z �in unit of �vFNF��p��

versus the order parameter ratio ��p� / ��s� at a temperature T
= ��s� /100. In the large ��p� limit, Jy

z = 1
2�vFNF��p�, while the spin

current vanishes in the pure singlet case. As ��p� increases from the
topologically trivial to nontrivial regimes, Jy

z follows different de-
pendence on ��p� around the transition ��p�= ��s�.
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FIG. 8. Total surface spin current density Iy
z �in the unit of

�2NFvF
2� versus the order parameter ratio ��p� / ��s� at a temperature

T= ��s� /100.
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̂��
x ,
y	3 ,
z�,23 and in the order parameter �̂ which ap-

pears inside M̂. From this, we obtain Eqs. �4�–�6�. Indeed, it

is useful to note that P� commute with M̂ = �i�n−�s
ˆ −�p

ˆ �. It

is easy to see that P�M̂ are the homogeneous solutions to
Eq. �1�. We can also see that the decaying and exploding
solutions in Eqs. �5� and �6� do satisfy Eq. �1�, and one can
further convince himself/herself by checking the relations,

�â++�2= �b̂++�2= �â−−�2= �b̂−−�2=0, and �ĝb�2= �ĝb
+++ ĝb

−−�2

=−�2, again hold. By similar reasoning as the d̂= ẑ case, Eqs.
�A7�–�A12� in the 4�4 form still hold for general d� .

Now we show how the present problem in Fig. 1 can be
solved in terms of these auxiliary solutions. For the outgoing
path denoted by k, the most general solution with the correct
limit as x→� is

ĝ�u� = ĝb�k� + c1
++�u�â++�k� + c1

−−�u�â−−�k� + c1
+−�u�â�s

+−�k�

+ c1
−+�u�â�s

−+�k� �A13�

with u=R · k̂ positive. For simplicity, the spatial dependence
e−2�+u/vF associated with â++ has been absorbed in the
c-number coefficient c1

++, and similarly for the others. For the
incoming path,

ĝ�u� = ĝb�k�� + c2
++�u�b̂++�k�� + c2

−−�u�b̂−−�k�� + c2
+−�u�b̂�s

+−�k��

+ c2
−+�u�b̂�s

−+�k�� �A14�

with u=R ·k�̂ negative here. We should remark that in the
above equations decaying/exploding solutions associated
with eigenvalue �d in the off-diagonal blocks has been ex-
cluded. We can see this by two different arguments. First, we
can imagine that, far away from the surface, the inversion
symmetry is restored. In that case �d→0 and hence they
would become constant solutions, which cannot exist at x
→�. Second, using relations Eqs. �A7�–�A12�, we can check
that their appearance would violate the normalization condi-

tion in Eq. �2�. Now putting u=0 in Eq. �A13� and multiply-

ing this equation with Â�k�= p1â+++ p2â−−+ p3â�s

+−+ p4â�s

−+,
and using Eqs. �A7�, �A9�, and �A10� yields

Â�k�ĝ�0� = i�Â�k� , �A15�

where the c numbers �pi ; i=1,2 ,3 ,4� are arbitrary. Similarly,

multiplying B̂�k��=q1b̂+++q2b̂−−+q3b̂�s

+−+q4b̂�s

−+ with Eq.
�A14� and using Eq. �A8�, �A11�, and �A12� yields

B̂�k��ĝ�0� = − i�B̂�k�� , �A16�

where again �qi ; i=1,2 ,3 ,4� are arbitrary. Multiplying the
above two equations by B�k�� and A�k�, respectively, and add,
one obtain the final expression in Eq. �4�. The choices for pi
and qi are not restricted, as long as the anticommutator
�A�k� ,B�k��� has a nonvanishing determinant and hence it is
invertible. The determinant vanishes when the energy coin-
cides with the Andreev bound state for a given , but the
invertibility can still be guaranteed by adding a small imagi-

nary number to the energy. Given two sets of matrix, Â1�k�
and B̂1�k��, Â2�k� and B̂2�k�� will then yield the same ĝ�0�.
Showing this is quite straightforward if one notices that first,
the commutator and the anticommutator in Eq. �4� commute

with each other, and second, Â1�k�Â2�k�= B̂1�k��B̂2�k��=0.
To evaluate the spin current density at a general position

x, we need the traces23 Tr�
̂	3ĝ�u�� at u. If d̂ � ẑ, we see that
contributions to Tr�
z	3ĝ�u�� arises only from the ++ and −−
blocks whereas Tr�
x	3ĝ�u�� and Tr�
yĝ�u�� arise only from
the +− and −+ blocks. Hence the latter two have u depen-
dence given by e−2�s�u�/vF �see Eqs. �A13� and �A14�; note

also Tr�
̂	3ĝb�=0�. Hence for general d̂, if n̂ is a vector

perpendicular to d̂, Tr��n̂ · 
̂�	3ĝ�u�� will have this same u

dependence. Since for our superconductor d̂ is in the x-y
plane, Tr�
z	3ĝ�u�� is simply Tr�
z	3ĝ�0��e−2�s�u�/vF. The x
integral needed for the total spin current is simply
�0

�dxe−2�s�u�/vF =
vF�cos �

2�s
.
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